Fundamental Research

PSI research facilities reveal magnetic crossover

Spins tick-tock like a grandfather clock and then stop. Thanks to complementary experiments at the Swiss Muon Source SµS, Swiss Spallation Neutron Source SINQ and the Swiss Light Source SLS, researchers led by the University of Geneva have discovered this coveted characteristic, known as magnetic crossover, hidden within the magnetic landscape of an exotic layered material. Magnetic crossover means tuneability and with it promise for spin-based electronics.

Smartly solved: How molecules release active ingredients in a targeted way

Smart molecules can change their shape and properties depending on temperature or other parameters such as macromolecular architecture. In pharmaceutic applications, they release active ingredients in a targeted manner at the desired locations. Neutrons at the MLZ reveal these nanostructures and help specifically design new molecules with desired properties.

Neutrons unravel 50-year-old physics mystery

More than 50 years ago, researchers discovered a pronounced phase transition in strontium iron oxide at room temperature. However, what exactly happens in this process at the atomic level has been unclear ever since. Using high-resolution neutron measurements, a research team from the Max Planck Institute for Solid State Research at the Heinz Maier-Leibnitz Center (MLZ) has now been able to solve this old mystery.