Science Highlights

PSI research facilities reveal magnetic crossover

Spins tick-tock like a grandfather clock and then stop. Thanks to complementary experiments at the Swiss Muon Source SµS, Swiss Spallation Neutron Source SINQ and the Swiss Light Source SLS, researchers led by the University of Geneva have discovered this coveted characteristic, known as magnetic crossover, hidden within the magnetic landscape of an exotic layered material. Magnetic crossover means tuneability and with it promise for spin-based electronics.

Smartly solved: How molecules release active ingredients in a targeted way

Smart molecules can change their shape and properties depending on temperature or other parameters such as macromolecular architecture. In pharmaceutic applications, they release active ingredients in a targeted manner at the desired locations. Neutrons at the MLZ reveal these nanostructures and help specifically design new molecules with desired properties.

Small-angle scattering techniques offer new insight towards the treatment of Alzheimer’s disease

Aggregates of amyloid beta- (Aβ-)peptide, known as fibrils, are one of the hallmarks of Alzheimer’s disease and play a key role in the sequence of events leading to dementia symptoms. Using small-angle neutron and X-ray scattering, researchers from Lund University and the Paul Scherrer Institut have determined the detailed structure of Aβ42-fibril, obtaining important information to design future therapeutics.