A quantum wave in two crystals
A team from TU Vienna, INRIM Turin and ILL Grenoble has succeeded for the first time in building a neutron interferometer from two separate crystals.
A team from TU Vienna, INRIM Turin and ILL Grenoble has succeeded for the first time in building a neutron interferometer from two separate crystals.
Spins tick-tock like a grandfather clock and then stop. Thanks to complementary experiments at the Swiss Muon Source SµS, Swiss Spallation Neutron Source SINQ and the Swiss Light Source SLS, researchers led by the University of Geneva have discovered this coveted characteristic, known as magnetic crossover, hidden within the magnetic landscape of an exotic layered material. Magnetic crossover means tuneability and with it promise for spin-based electronics.
New research published in Science brings us a step closer to magnonic devices and quantum computing. Neutron analysis has revealed the behaviour of magnetic waves in a class of materials, enabling scientists to picture a future where electronic currents no longer cause our devices to heat up.
A collaborative research team has discovered a new inorganic material with the lowest thermal conductivity ever reported.
Scientists from Jülich, together with colleagues from Germany, France and China, have discovered a new property in quantum materials offering great potential for novel technical applications.
It has been long debated whether the ideal glass exists. Now, a group of physicists from Spain has succeeded in producing the ideal glass and relating it to observations with inelastic neutron scattering at MLZ.
With experimental work demonstrating that the correlated ground state of the pyrochlore system Ce2Sn2O7 is a quantum liquid of magnetic octupoles, an international team led by PSI researcher Romain Sibille establishes a fundamentally new state of matter: higher-rank multipole ice.
A complete set of detector response functions, i.e. the gamma spectra corresponding to incremental gamma-ray energies up to 12 MeV, were obtained for the Budapest PGAA facility by geant4 Monte-Carlo simulations and were used to unfold the experimental prompt-gamma spectra, for use in nuclear physics.
The unfolding successfully removed the continuous Compton-background and the escape peaks related to a full-energy peak but preserved the shape and area of the full-energy peak itself.
The behaviour of colloidal particles at water-solid interfaces is relevant in material science, food processing, medicine and environmental engineering. A team from the University of Geneva with researchers from the Budapest Neutron Centre used neutron reflectivity to study colloidal silica nanoparticle suspensions near the (negatively) like-charged native-oxide-covered surface of Si. Intriguingly, the nanospheres develop a self-organised damped, oscillatory concentration profile normal to the interface, as demonstrated in the figure.