Fundamental Research Health Industrial Applications Science Highlights

Revolution in imaging with neutrons

An international research team at the Research Neutron Source Heinz Maier-Leibnitz (FRM II) of the Technical University of Munich (TUM) has developed a new imaging technology. In the future, this technology could not only improve the resolution of neutron measurements by many times, but could also reduce the radiation dose for medical x-ray imaging.

Continue reading

Health Industrial Applications Science Highlights

Skin-like material developed for wearables

Scientists at Forschungszentrum Jülich and Donghua University in Shanghai, China, have demonstrated a skin-like synthetic material intended to advance the development of so-called “wearables”, as well as smart clothing and artificial skin for robots. Neutrons from the Heinz Maier-Leibnitz research neutron source helped them to study the new material in detail.

Continue reading

Climate and environment Pollution

Neutrons detect air pollution

Portuguese scientists have analysed lichens from areas with traditional charcoal production for the first time with the help of the Research Neutron Source Heinz Maier-Leibnitz (FRM II) of the Technical University of Munich (TUM). Lichens located near areas of charcoal production contained more than twice the concentration of phosphorus, which is generated during the combustion process.

Continue reading

Next generation batteries

Captured lithium

In our smartphones, our computers and in our electric cars: We use rechargeable lithium-ion batteries everywhere. But their capacity drops after a while. Now a German-American research team has investigated the structure and functionality of these batteries using neutron diffraction: They discovered that the electrolyte fluid’s decomposition products capture mobile lithium in the battery and that the distribution of lithium within the cell is surprisingly uneven.

Continue reading

Sustainable industry and resource use

Ionic Liquid Bursts Open Wood Fibres In Minutes

High-grade biopolymers can be obtained from wood, which could replace fossil resources as a base material for a variety of products. However, this requires gentler processes than, for example, the production of cellulose for paper manufacture. So-called ionic liquids are suitable for breaking down wood in a gentle first-treatment step, and for making its components accessible for further processing.

Continue reading