PSI research facilities reveal magnetic crossover

Spins tick-tock like a grandfather clock and then stop. Thanks to complementary experiments at the Swiss Muon Source SµS, Swiss Spallation Neutron Source SINQ and the Swiss Light Source SLS, researchers led by the University of Geneva have discovered this coveted characteristic, known as magnetic crossover, hidden within the magnetic landscape of an exotic layered material. Magnetic crossover means tuneability and with it promise for spin-based electronics.

Small-angle scattering techniques offer new insight towards the treatment of Alzheimer’s disease

Aggregates of amyloid beta- (Aβ-)peptide, known as fibrils, are one of the hallmarks of Alzheimer’s disease and play a key role in the sequence of events leading to dementia symptoms. Using small-angle neutron and X-ray scattering, researchers from Lund University and the Paul Scherrer Institut have determined the detailed structure of Aβ42-fibril, obtaining important information to design future therapeutics.

Neutron reflectometry reveals SARS-CoV-2 spike protein induces lipid stripping from cell membrane

Scientists at the Institut Laue-Langevin (ILL), in collaboration with the Paul Scherrer Institut (PSI), the Institut de Biologie Structurale (IBS) and the Australian Nuclear Science and Technology Organisation (ANSTO), have published new data on how the SARS-CoV-2 spike protein interacts with mammalian lung cell membranes allowing the viral RNA to enter human cells.